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Laplacian



Discrete random walk

State:
Let xi = i4x with i ∈ Z be the location of the particle at time tn = n4t.

Dynamics:
If the particle is in state xi at time step tn, it will jump either to xi−1 or
to xi+1 with equal probabilities.



Discrete random walk

Define

p(m, n) = probability that the particle is in state xm at time step tn.

REMARK

p(m, n) =

(
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2

)n (
n
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)
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)n
n!

a!(n − a)!
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n + m

2
.



Discrete random walk and the heat equation

Master equation

p(m; n) =
1

2
p
(
m − 1, n − 1

)
+

1

2
p
(
m + 1; n − 1

)
.

We now scale the master equation, using

4x → 0, 4t → 0,
4x2

24t
= D.

We assume that the scaled probabilities p(m, n) approach a continuous
(and even twice differentiable!) function u(x ; t)

u(x ; t) = p

(
x

4x
,

t

4t

)
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Discrete random walk and the heat equation

Then

u(x ; t) =
1

2
u(x −4x , t −4t) +

1

2
u(x +4x , t −4t),

or equivalently,

u(x ; t)− u(x , t −4t)

4t

=
4x2

24t

u(x −4x , t −4t)− 2u(x , t −4t) + u(x +4x , t −4t)

4x2
.

In the limit 4x → 0, 4t → 0, and 4x2

24t = D, we obtain the heat equation

ut = Duxx .
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Discrete random walk and the heat equation

In the case of the random walk on the d-dimensional lattice (4x)Zd , we
obtain

ut = D∆u

(
= D

d∑
k=1

∂2u

∂x2k

)
.

Fundamental solution

N (x , t) =
1

(2πDt)n/2
exp

(
−|x |2

4Dt

)
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Laplace operator & Wiener process

Brownian motion – one trajectory of a Wiener process



Laplace operator & Wiener process

Definition
The stochastic process {W (t)}t≥0 is called the Wiener process, if it
fulfils the following conditions

I W (0) = 0 with probability equal to one,

I W (t) has independent increments ,

I trajectories of W are continuous with probability equal to one

I ∀0≤s≤t Wt −Ws ∼ N (0, t − s).

For every function u0 ∈ Cb(Rn) we define

u(x , t) = E x(u0(W (t))) =

∫
Rn

u0(x − y) N (0, t)(dy),

where N (0, t)(dy) = (2πt)−n/2e−|y |
2/(2t)dy .

Hence

ut =
1

2
∆u oraz u(x , 0) = u0(x).



Fractional Laplacian



Random walk and fractional Laplacian

Let Π : Rd → [0,+∞) satisfies

Π(y) = Π(−y) for any y ∈ Rd ,

and ∑
k∈Zd

Π(k) = 1.

New notation: h = 4x , τ = 4t

Give a small h > 0, we consider a random walk on the lattice hZd .

Dynamics

I at any unit of time τ , a particle jumps from any point of hZd to any
other point;

I the probability for which a particle jumps from the point hk ∈ hZd

to the point hk̃ is taken to be Π(k − k̃) = Π(k̃ − k).



Random walk and fractional Laplacian

We call u(x , t) the probability that our particle

lies at x ∈ hZd at time t ∈ Z.

u(x , t + τ) =
∑
k∈Zd

Π(k)u(x + hk , t).

Hence,

u(x , t + τ)− u(x , t) =
∑
k∈Zd

Π(k)
(
u(x + hk , t)− u(x , t)

)
.
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Random walk and fractional Laplacian

Particularly nice asymptotics are obtained in the case

τ = hα and Π(y) =
C

|y |d+α
for y 6= 0

and Π(0) = 0.

We observe that
Π(k)

τ
= hdΠ(hk).



Random walk and fractional Laplacian

Hence

u(x , t + τ)− u(x , t)

τ
=

∑
k∈Zd

Π(k)

τ

(
u(x + hk, t)− u(x , t)

)
= hd

∑
k∈Zd

Π(hk)
(
u(x + hk , t)− u(x , t)

)
= hd

∑
k∈Zd

ψ(hk , x , t).

where
ψ(y , x , t) = Π(y)

(
u(x + y , t)− u(x , t)

)
.



Random walk and fractional Laplacian

Notice that

hd
∑
k∈Zd

ψ(hk , x , t)→
∫
Rd

ψ(y , x , t) dy when h→ 0.

Consequently, passing to the limit τ = hα → 0 we obtain the equation

ut(x , t) =

∫
Rd

ψ(y , x , t) dy ,

that is

ut(x , t) = C

∫
Rd

u(x + y , t)− u(x , t)

|y |n+α
dy .

NOTATION
ut(x , t) = −(−∆)α/2u(x , t)



Fractional Laplacian

Now, we compute the Fourier transform of the equation

ut(x , t) = C

∫
Rd

u(x + y , t)− u(x , t)

|y |n+α
dy .

to obtain
ût(ξ, t) = C (α, n)|ξ|αû(ξ, t)

where

C (α, n) = C

∫
Rd

e iξ0y − 1

|y |n+α
dy < 0.

Fractional Laplacian

̂(
(−∆)α/2v

)
(ξ) = |ξ|αv̂(ξ).



Laplace operator & Wiener process

Brownian motion – one trajectory of a Wiener process



Lévy process

One trajectory of a Lévy process



Lévy process

Two pictures of the same trajectory of a Lévy process



Lévy process

Definition
The stochastic process {X (t) : t ≥ 0} on the probability space
(Ω,F ,P) is called the Lévy process with values in Rn if it fulfils the
following conditions:

I X(0) = 0, P-p.w.,

I for every sequence 0 ≤ t0 < t1 < · · · < tn random variables
X (t0),X (t1)− X (t0), . . . ,X (tn)− X (tn−1) are independent,

I the law of X (s + t)− X (s) is independent of s,

I the process X (t) is continuous in probability, namely,
lims→t P(|Xs − Xt | > ε) = 0.



Lévy-Khinchin formula

Lévy operator:

Lu(x) = b · ∇u(x)−
d∑

j,k=1

ajk
∂2u

∂xj∂xk
−
∫
Rd

(
u(x − η)− u(x)

)
Π(dη),

where

I b ∈ Rd is a given vector,

I (ajk)dj,k=1 is a given nonnegative definite matrix

I Π in a Borel measure satisfying Π({0}) = 0 and∫
Rd

min(1, |η|2) Π(dη) <∞



Fractional Laplacian

Let

Π(dη) =
C (α)

|η|n+α
with α ∈ (0, 2)

in

Lu(x) = −
∫
Rd

(
u(x − η)− u(x)

)
Π(dη).

We obtain the α-stable anomalous diffusion equation:

ut + (−∆)α/2u = 0



Fundamental solution of the equation ut + (−∆)α/2u = 0

Define the function pα(x , t) by the Fourier transform:

p̂α(ξ, t) = e−t|ξ|
α

. Note that p2(x , t) = (4πt)−d/2e−|x|
2/(4t).

I Scaling:

pα(x , t) = t−d/αPα(xt−1/α), where (Pα)̌ (ξ) = e−|ξ|
α

.

I For every α ∈ (0, 2), the function Pα is smooth, nonnegative,∫
Rd Pα(x) dx = 1, and satisfies

0 ≤ Pα(x) ≤ C (1+|x |)−(α+d) and |∇Pα(x)| ≤ C (1+|x |)−(α+d+1)

for a constant C and all x ∈ Rd .



Maximum principle



Maximum principle

Definition
The operator A satisfies the positive maximum principle if for any
ϕ ∈ D(A) the fact

0 ≤ ϕ(x0) = sup
x∈Rn

ϕ(x) for some x0 ∈ Rn

implies
Aϕ(x0) ≤ 0.

�

REMARK
Aϕ = ϕ′′ or, more generally, Aϕ = ∆ϕ satisfies the positive maximum
principle.



Maximum principle

THEOREM
Denote by L the Lévy diffusion operator. Then A = −L satisfies the
positive maximum principle.

Proof
Assume that 0 ≤ ϕ(x0) = supx∈Rn ϕ(x). Then

−Lϕ(x0) = −b · ∇ϕ(x0) +
n∑

j,k=1

ajk
∂2ϕ(x0)

∂xj∂xk

+

∫
Rn

(
ϕ(x0 − η)− ϕ(x0)

)
Π(dη) ≤ 0.

�



Convexity inequality

THEOREM
Let u ∈ C 2

b (Rn) and g ∈ C 2(R) be a convex function. Then

Lg(u) ≤ g ′(u)Lu.

Proof. Use the representation

Lu(x) = b · ∇u(x)−
n∑

j,k=1

ajk
∂2u

∂xj∂xk
−
∫
Rn

(
u(x − η)− u(x)

)
Π(dη).

and the convexity of g

g(u(x − η))− g(u(x)) ≥ g ′(u(x))[u(x − η)− u(x)].

�



Nonlinear models with
fractional Laplacian



Fractal Burgers equation

ut + (−∆)α/2u + uux = 0

where x ∈ R.



Self-interacting individuals

Differential equations describing the behavior of a collection of
self-interacting individuals via pairwise potentials arise in the modeling of
animal collective behavior: ocks, schools or swarms formed by insects,
fishes and birds.

The simplest model:

dxj
dt

= −
∑
j 6=i

mj∇K (xi − xj).

Here, xi is the position of the particle with mass mi .

The continuum descriptions

ut = −∇ ·
(
u(∇K ∗ u)

)
.

Here, the unknown function u = u(x , t) ≥ 0 is either the population
density of a species or the density of particles in a granular media.



Model of chemotaxis

ut = −(−∆)α/2u −∇ ·
(
u(∇K ∗ u)

)
where α ∈ (0, 2].


