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Laplacian



Discrete

State:

Let x; =

Dynamics:

random walk
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iAx with i € Z be the location of the particle at time t, = nAt.

If the particle is in state x; at time step t,, it will jump either to x;_1 or
to xj11 with equal probabilities.



Discrete random walk

Define

p(m, n) = probability that the particle is in state x,, at time step t,.

REMARK

o= (3 ()~ () sy oo -5




Discrete random walk and the heat equation

Master equation

p(m;n):%p(m—l,n—l) +%p(m+1;n—1).



Discrete random walk and the heat equation

Master equation

p(m;n)z%p(m—lm—l) +%p(m+1;n—1).

We now scale the master equation, using

Ax?
AX—>O, At—>0, E—D

We assume that the scaled probabilities p(m, n) approach a continuous
(and even twice differentiable!) function u(x; t)

s -n( )



Discrete random walk and the heat equation

Then

1 1
u(x; t) = 5u(x — Ax,t— At) + 5u(x + Ax, t — At),



Discrete random walk and the heat equation

Then
1 1
u(x; t) = 5u(x — Ax,t— At) + 5u(x + Ax, t — At),

or equivalently,

u(x; t) — u(x, t — At)

At
AX u(x — Ax,t— At) = 2u(x, t — At) + u(x + Ax, t — At)
T 2At Ax? '
In the limit Ax — 0, At — 0, and ZA—AXi = D, we obtain the heat equation

us = Duy,.



Discrete random walk and the heat equation

In the case of the random walk on the d-dimensional lattice (Ax)Z?, we

obtain ;
&%u
uy = DAu <:Dzaxg>'



Discrete random walk and the heat equation

In the case of the random walk on the d-dimensional lattice (Ax)Z?, we
obtain ;
%u
= DA =D» —|.
ue u < Z aXE>
Fundamental solution

_ 1 —IxI?
NGt = by exP( 4Dt )




Laplace operator & Wiener process

Brownian motion — one trajectory of a Wiener process



Laplace operator & Wiener process

Definition
The stochastic process { W(t)},~, is called the Wiener process, if it
fulfils the following conditions
» W(0) = 0 with probability equal to one,
» W(t) has independent increments ,
> trajectories of W are continuous with probability equal to one
> Vogsgt Wi — Wy ~ ./\/(0, t— S).

For every function up € Cp(R") we define
u(x, t) = EX(uo(W(t))) = / up(x — y) N(0, t)(dy),
where N(0, t)(dy) = (2rt)~"/2e= I/ gy

Hence

1
uy = iAu oraz  u(x,0) = up(x).



Fractional Laplacian



Random walk and fractional Laplacian
Let M: R — [0, +00) satisfies
N(y) =MN(-y) forany yecR
and

> Nk =1

kezd

New notation: h= Ax, 7=At
Give a small h > 0, we consider a random walk on the lattice hZ“.

Dynamics

» at any unit of time 7, a particle jumps from any point of hZ< to any
other point;

> the probability for which a particle jumps from the point hk € hz4
to the point hk is taken to be M(k — k) = M(k — k).



Random walk and fractional Laplacian

We call u(x, t) the probability that our particle

liesat x € hZ? attime teZ.



Random walk and fractional Laplacian

We call u(x, t) the probability that our particle

liesat x € hZ? attime teZ.

u(x,t+7) = ZI"I u(x + hk,t).
kezd

Hence,

u(x, t+7) = ulx, t) = > N(k)(u(x + hk, t) — u(x, 1)).

kezd



Random walk and fractional Laplacian

Particularly nice asymptotics are obtained in the case

C
T=h" and I'I(y):Wfory#O

and M(0) = 0.

We observe that




Random walk and fractional Laplacian

Hence
u(x, t+ TT) —u(x,t) 3 @(U(X + hk,t) — u(x, t))
kezd
— Z N(hk) (u(x + hk, t) — u(x, t))
kezd
= hd Z "(/}(hk,X, t)
kezd
where

Uy, x, ) = N(y) (ulx +y, 1) — u(x 1))



Random walk and fractional Laplacian

Notice that

h? >~ w(hk, x, t) —>/1/)y,xt)dy when h— 0.

kezd

Consequently, passing to the limit 7 = h* — 0 we obtain the equation

ux.t) = [ 0lyx ).

that is

ue(x, t)—C/ ulx+y,t) — u(x, t) dy

|y|n+oc

NOTATION
ue(x, t) = 7(*A)a/2u(X, t)



Fractional Laplacian

Now, we compute the Fourier transform of the equation

u(x+y,t) — u(x,t)

u(x,t) =C dy.
R
to obtain
/th(f, t) = C(Oé, n)|§|aa(£’ t)
where ]
ey _ 1
Cla,n)=C dy <0

Fractional Laplacian

-

((=a)272v)(&) = [€]*V(&)-



Laplace operator & Wiener process

Brownian motion — one trajectory of a Wiener process



Lévy process

One trajectory of a Lévy process



Lévy process
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Two pictures of the same trajectory of a Lévy process



Lévy process

Definition

The stochastic process {X(t) : t > 0} on the probability space
(2, F, P) is called the Lévy process with values in R" if it fulfils the
following conditions:

» X(0) =0, P-p.w.,

> for every sequence 0 < ty < t; < -+ < t, random variables
X(to), X(t1) — X(to), - .., X(ts) — X(t,—1) are independent,

> the law of X(s + t) — X(s) is independent of s,

> the process X(t) is continuous in probability, namely,
lims: P(|Xs — X¢| > ) =0.



Lévy-Khinchin formula

Lévy operator:

Lu(x) = b-Vu(x Z Jkaxjaxk - /Rd (U(X —n) — U(X)) M(dn),

J,k=1

where

» b e R is a given vector,
> (ajk)f —; is a given nonnegative definite matrix

» 1 in a Borel measure satisfying M1({0}) = 0 and

/Rd min(1, [n]?) N(dn) < oo



Fractional Laplacian

Let c
MN(dn) = 77|("?21 with  « € (0,2)

£u() = = [ (ulx =) = () ().
Rd
We obtain the a-stable anomalous diffusion equation:

ur + (—A)*2u =0



Fundamental solution of the equation u; + (—A)*?u =0

Define the function p,(x, t) by the Fourier transform:
Pal€,t) = e HEl". Note that pa(x, t) = (4rt)~9/2e=IxI"/(40),

» Scaling:

Pa(x,t) = t_d/aPa(Xt—l/Oé), where  (P,)"(¢) = e lel”
» For every a € (0,2), the function P, is smooth, nonnegative,
Jge Pa(x) dx =1, and satisfies
0 < Po(x) < C(1+[x) ") and  [VP4(x)] < C(1+]x|) (>

for a constant C and all x € RY.



Maximum principle



Maximum principle

Definition
The operator A satisfies the positive maximum principle if for any
© € D(A) the fact

0 < p(x0) = sup p(x) for some xg € R"
x€R"

implies
Ap(x) < 0.

REMARK
Ap = " or, more generally, Ap = Ay satisfies the positive maximum
principle.



Maximum principle

THEOREM

Denote by £ the Lévy diffusion operator. Then A = —L satisfies the
positive maximum principle.

Proof
Assume that 0 < p(xp) = sup,cpn ©(x). Then

—Lo(x) = —b-Ve(x) + Z a2
J,k=1

+ [ (o =) = ¢lo0)) () <0

(’9xj 8Xk



Convexity inequality
THEOREM

Let u € C3(R") and g € C?(R) be a convex function. Then

Lg(u) < g'(u)Lu.
Proof. Use the representation

Lu(x) = b-Vu(x i ajk 8)98Xk /Rn (u(x —-n)— u(x)) MN(dn).

J,k=1

and the convexity of g

g(u(x —n)) — g(u(x)) = g'(u(x))[u(x —n) — u(x)].



Nonlinear models with
fractional Laplacian



Fractal Burgers equation

ur + (—A)Y 2y + uuye = 0

where x € R.



Self-interacting individuals

Differential equations describing the behavior of a collection of
self-interacting individuals via pairwise potentials arise in the modeling of
animal collective behavior: ocks, schools or swarms formed by insects,
fishes and birds.

The simplest model:
dx;
d—; =— Z m;VK(xi — x;).
J#i
Here, x; is the position of the particle with mass m;.

The continuum descriptions
up ==V - (u(VK % u)).

Here, the unknown function u = u(x,t) > 0 is either the population
density of a species or the density of particles in a granular media.



Model of chemotaxis

up = —(—A)2y -V - (u(VK * u))

where  «a € (0,2].



