Fractional Laplacian

Grzegorz Karch

5ème Ecole de printemps EDP Non-linéaire Mathématiques et Interactions: modèles non locaux et applications Ecole Supérieure de Technologie d'Essaouira , du 27 au 30 Avril 2015

Laplacian

Discrete random walk

State:

Let $x_i = i \triangle x$ with $i \in \mathbb{Z}$ be the location of the particle at time $t_n = n \triangle t$.

Dynamics:

If the particle is in state x_i at time step t_n , it will jump either to x_{i-1} or to x_{i+1} with equal probabilities.

Discrete random walk

Define

p(m, n) = probability that the particle is in state x_m at time step t_n .

REMARK

$$p(m,n) = \left(\frac{1}{2}\right)^n \binom{n}{a} = \left(\frac{1}{2}\right)^n \frac{n!}{a!(n-a)!}$$
 where $a = \frac{n+m}{2}$.

Master equation

$$p(m; n) = \frac{1}{2}p(m-1, n-1) + \frac{1}{2}p(m+1; n-1).$$

Master equation

$$p(m; n) = \frac{1}{2}p(m-1, n-1) + \frac{1}{2}p(m+1; n-1).$$

We now scale the master equation, using

$$riangle x o 0, \qquad riangle t o 0, \qquad rac{ riangle x^2}{2 riangle t} = D.$$

We assume that the scaled probabilities p(m, n) approach a continuous (and even twice differentiable!) function u(x; t)

$$u(x;t)=p\left(\frac{x}{\bigtriangleup x},\frac{t}{\bigtriangleup t}\right)$$

Then

$$u(x;t) = \frac{1}{2}u(x-\bigtriangleup x,t-\bigtriangleup t) + \frac{1}{2}u(x+\bigtriangleup x,t-\bigtriangleup t),$$

Then

$$u(x;t) = \frac{1}{2}u(x-\bigtriangleup x,t-\bigtriangleup t) + \frac{1}{2}u(x+\bigtriangleup x,t-\bigtriangleup t),$$

or equivalently,

$$\frac{u(x;t) - u(x,t - \Delta t)}{\Delta t} = \frac{\Delta x^2}{2\Delta t} \frac{u(x - \Delta x, t - \Delta t) - 2u(x,t - \Delta t) + u(x + \Delta x, t - \Delta t)}{\Delta x^2}.$$

In the limit $\triangle x \to 0$, $\triangle t \to 0$, and $\frac{\triangle x^2}{2\triangle t} = D$, we obtain the heat equation

$$u_t = Du_{xx}$$

In the case of the random walk on the *d*-dimensional lattice $(\triangle x)\mathbb{Z}^d$, we obtain

$$u_t = D\Delta u \quad \left(= D \sum_{k=1}^d \frac{\partial^2 u}{\partial x_k^2} \right).$$

In the case of the random walk on the *d*-dimensional lattice $(\triangle x)\mathbb{Z}^d$, we obtain

$$u_t = D\Delta u \quad \left(= D \sum_{k=1}^d \frac{\partial^2 u}{\partial x_k^2} \right).$$

Fundamental solution

$$\mathcal{N}(x,t) = \frac{1}{(2\pi Dt)^{n/2}} \exp\left(\frac{-|x|^2}{4Dt}\right)$$

Laplace operator & Wiener process

Brownian motion - one trajectory of a Wiener process

Laplace operator & Wiener process

Definition

The stochastic process $\{W(t)\}_{t\geq 0}$ is called the Wiener process, if it fulfils the following conditions

- W(0) = 0 with probability equal to one,
- W(t) has independent increments ,
- \blacktriangleright trajectories of W are continuous with probability equal to one

$$\blacktriangleright \forall_{0 \leq s \leq t} W_t - W_s \sim \mathcal{N}(0, t-s).$$

For every function $u_0 \in C_b(\mathbb{R}^n)$ we define

$$u(x,t) = E^{x}(u_{0}(W(t))) = \int_{\mathbb{R}^{n}} u_{0}(x-y) \mathcal{N}(0,t)(dy),$$

where $\mathcal{N}(0, t)(dy) = (2\pi t)^{-n/2} e^{-|y|^2/(2t)} dy$. Hence

$$u_t = \frac{1}{2}\Delta u$$
 oraz $u(x,0) = u_0(x).$

Fractional Laplacian

Let $\Pi: \mathbb{R}^d \to [0, +\infty)$ satisfies

$$\Pi(y) = \Pi(-y)$$
 for any $y \in \mathbb{R}^d$,

and

$$\sum_{k\in\mathbb{Z}^d}\Pi(k)=1.$$

New notation: $h = \triangle x$, $\tau = \triangle t$

Give a small h > 0, we consider a **random walk** on the lattice $h\mathbb{Z}^d$.

Dynamics

- ▶ at any unit of time \(\tau\), a particle jumps from any point of \(h\mathbb{Z}^d\) to any other point;
- ► the probability for which a particle jumps from the point $hk \in h\mathbb{Z}^d$ to the point $h\tilde{k}$ is taken to be $\Pi(k \tilde{k}) = \Pi(\tilde{k} k)$.

We call u(x, t) the probability that our particle

lies at $x \in h\mathbb{Z}^d$ at time $t \in \mathbb{Z}$.

We call u(x, t) the probability that our particle

lies at
$$x \in h\mathbb{Z}^d$$
 at time $t \in \mathbb{Z}$.

$$u(x,t+\tau)=\sum_{k\in\mathbb{Z}^d}\Pi(k)u(x+hk,t).$$

Hence,

$$u(x,t+\tau)-u(x,t)=\sum_{k\in\mathbb{Z}^d}\Pi(k)\big(u(x+hk,t)-u(x,t)\big).$$

Particularly nice asymptotics are obtained in the case

$$au = h^{lpha}$$
 and $\Pi(y) = rac{C}{|y|^{d+lpha}}$ for $y
eq 0$

and $\Pi(0) = 0$.

We observe that

$$\frac{\Pi(k)}{\tau} = h^d \Pi(hk).$$

Hence

$$\begin{aligned} \frac{u(x,t+\tau)-u(x,t)}{\tau} &= \sum_{k\in\mathbb{Z}^d} \frac{\Pi(k)}{\tau} \big(u(x+hk,t)-u(x,t) \big) \\ &= h^d \sum_{k\in\mathbb{Z}^d} \Pi(hk) \big(u(x+hk,t)-u(x,t) \big) \\ &= h^d \sum_{k\in\mathbb{Z}^d} \psi(hk,x,t). \end{aligned}$$

where

$$\psi(y,x,t) = \Pi(y) \big(u(x+y,t) - u(x,t) \big).$$

Notice that

$$h^d \sum_{k \in \mathbb{Z}^d} \psi(hk, x, t) o \int_{\mathbb{R}^d} \psi(y, x, t) \, dy \quad ext{when} \quad h o 0.$$

Consequently, passing to the limit $au=h^lpha
ightarrow 0$ we obtain the equation

$$u_t(x,t) = \int_{\mathbb{R}^d} \psi(y,x,t) \, dy,$$

that is

$$u_t(x,t) = C \int_{\mathbb{R}^d} \frac{u(x+y,t) - u(x,t)}{|y|^{n+\alpha}} \, dy.$$

NOTATION

$$u_t(x,t) = -(-\Delta)^{\alpha/2}u(x,t)$$

Fractional Laplacian

Now, we compute the Fourier transform of the equation

$$u_t(x,t) = C \int_{\mathbb{R}^d} \frac{u(x+y,t) - u(x,t)}{|y|^{n+\alpha}} \, dy.$$

to obtain

$$\widehat{u}_t(\xi, t) = C(\alpha, n) |\xi|^{\alpha} \widehat{u}(\xi, t)$$

where

$$C(\alpha, n) = C \int_{\mathbb{R}^d} \frac{e^{i\xi_0 y} - 1}{|y|^{n+\alpha}} \, dy < 0.$$

Fractional Laplacian

$$(\widehat{(-\Delta)^{\alpha/2}}v)(\xi) = |\xi|^{\alpha}\widehat{v}(\xi).$$

Laplace operator & Wiener process

Brownian motion - one trajectory of a Wiener process

Lévy process

One trajectory of a Lévy process

Lévy process

Two pictures of the same trajectory of a Lévy process

Lévy process

Definition

The stochastic process $\{X(t) : t \ge 0\}$ on the probability space (Ω, F, P) is called the Lévy process with values in \mathbb{R}^n if it fulfils the following conditions:

- ▶ for every sequence $0 \le t_0 < t_1 < \cdots < t_n$ random variables $X(t_0), X(t_1) X(t_0), \ldots, X(t_n) X(t_{n-1})$ are independent,
- the law of X(s+t) X(s) is independent of s,
- ► the process X(t) is continuous in probability, namely, $\lim_{s \to t} P(|X_s - X_t| > \varepsilon) = 0.$

Lévy-Khinchin formula

Lévy operator:

$$\mathcal{L}u(x) = b \cdot \nabla u(x) - \sum_{j,k=1}^{d} a_{jk} \frac{\partial^2 u}{\partial x_j \partial x_k} - \int_{\mathbb{R}^d} \left(u(x-\eta) - u(x) \right) \Pi(d\eta),$$

where

- $b \in \mathbb{R}^d$ is a given vector,
- $(a_{jk})_{j,k=1}^d$ is a given nonnegative definite matrix
- Π in a Borel measure satisfying $\Pi(\{0\}) = 0$ and

$$\int_{\mathbb{R}^d} \min(1,|\eta|^2) \, \mathsf{\Pi}(d\eta) < \infty$$

Fractional Laplacian

Let

$$\Pi(d\eta) = rac{\mathcal{C}(lpha)}{|\eta|^{n+lpha}} \quad ext{with} \quad lpha \in (0,2)$$

in

$$\mathcal{L}u(x) = -\int_{\mathbb{R}^d} \left(u(x-\eta) - u(x) \right) \Pi(d\eta).$$

We obtain the $\alpha\mbox{-stable}$ anomalous diffusion equation:

$$u_t + (-\Delta)^{\alpha/2} u = 0$$

Fundamental solution of the equation $u_t + (-\Delta)^{\alpha/2} u = 0$

Define the function $p_{\alpha}(x, t)$ by the Fourier transform:

$$\widehat{p}_lpha(\xi,t)=e^{-t|\xi|^lpha}.$$
 Note that $p_2(x,t)=(4\pi t)^{-d/2}e^{-|x|^2/(4t)}.$

Scaling:

$$p_{lpha}(x,t)=t^{-d/lpha}P_{lpha}(xt^{-1/lpha}), \quad ext{where} \quad (P_{lpha})\check{}(\xi)=e^{-|\xi|^{lpha}}.$$

▶ For every $\alpha \in (0, 2)$, the function P_{α} is smooth, nonnegative, $\int_{\mathbb{R}^d} P_{\alpha}(x) dx = 1$, and satisfies

 $0\leq P_lpha(x)\leq C(1{+}|x|)^{-(lpha+d)}$ and $|
abla P_lpha(x)|\leq C(1{+}|x|)^{-(lpha+d+1)}$

for a constant C and all $x \in \mathbb{R}^d$.

Maximum principle

Maximum principle

Definition

The operator A satisfies the **positive maximum principle** if for any $\varphi \in D(A)$ the fact

$$0 \leq \varphi(x_0) = \sup_{x \in \mathbb{R}^n} \varphi(x) \quad ext{for some} \quad x_0 \in \mathbb{R}^n$$

implies

$$A\varphi(x_0)\leq 0.$$

REMARK

 $A\varphi=\varphi''$ or, more generally, $A\varphi=\Delta\varphi$ satisfies the positive maximum principle.

Maximum principle

THEOREM

Denote by \mathcal{L} the Lévy diffusion operator. Then $A = -\mathcal{L}$ satisfies the positive maximum principle.

Proof

Assume that $0 \leq \varphi(x_0) = \sup_{x \in \mathbb{R}^n} \varphi(x)$. Then

$$egin{aligned} -\mathcal{L}arphi(\mathbf{x}_0) &= -b\cdot
abla arphi(\mathbf{x}_0) + \sum_{j,k=1}^n a_{jk} rac{\partial^2 arphi(\mathbf{x}_0)}{\partial x_j \partial x_k} \ &+ \int_{\mathbb{R}^n} \left(arphi(\mathbf{x}_0-\eta) - arphi(\mathbf{x}_0)
ight) \Pi(d\eta) \leq 0. \end{aligned}$$

Convexity inequality

THEOREM Let $u \in C^2_b(\mathbb{R}^n)$ and $g \in C^2(\mathbb{R})$ be a convex function. Then

$$\mathcal{L}g(u)\leq g'(u)\mathcal{L}u$$

Proof. Use the representation

$$\mathcal{L}u(x) = b \cdot \nabla u(x) - \sum_{j,k=1}^{n} a_{jk} \frac{\partial^2 u}{\partial x_j \partial x_k} - \int_{\mathbb{R}^n} \left(u(x-\eta) - u(x) \right) \Pi(d\eta).$$

and the convexity of g

$$g(u(x-\eta)) - g(u(x)) \ge g'(u(x))[u(x-\eta) - u(x)]$$

Nonlinear models with fractional Laplacian

Fractal Burgers equation

$u_t + (-\Delta)^{\alpha/2}u + uu_x = 0$

where $x \in \mathbb{R}$.

Self-interacting individuals

Differential equations describing the behavior of a collection of self-interacting individuals via pairwise potentials arise in the modeling of animal collective behavior: ocks, schools or swarms formed by insects, fishes and birds.

The simplest model:

$$\frac{dx_j}{dt} = -\sum_{j\neq i} m_j \nabla K(x_i - x_j).$$

Here, x_i is the position of the particle with mass m_i .

The continuum descriptions

$$u_t = -\nabla \cdot \big(u(\nabla K * u) \big).$$

Here, the unknown function $u = u(x, t) \ge 0$ is either the population density of a species or the density of particles in a granular media.

Model of chemotaxis

$$u_t = -(-\Delta)^{lpha/2}u -
abla \cdot ig(u(
abla K * u)ig)$$
 where $lpha \in (0, 2].$